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Cellular automata model for gene networks

J. A. de Sales, M. L. Martins, and D. A. Stariolo
Departamento de Fı´sica, Universidade Federal de Vic¸osa, 36571-000, Vic¸osa, Minas Gerais, Brazil

~Received 1 May 1996; revised manuscript received 17 October 1996!

In order to study the overall behavior of gene networks, we propose a simple cellular automata~CA! model
in which each binary gene is connected toK other inputs~including itself! interacting through asymmetric
short- and long-range couplings. Using numerical simulations and mean-field calculations, collective dynami-
cal properties of this CA model were investigated. It is shown that the CA exhibits three different dynamical
regimes: a frozen, a marginal, and a chaotic phase, where an initial damage vanishes, remains limited, and
grows to a finite fraction of the lattice sites, respectively. The results presented are also consistent with the
observed biological scaling laws for the number of differentiated cells and cell length cycles as a function of
the number of genes in an organism.@S1063-651X~97!03303-5#

PACS number~s!: 87.10.1e, 0.5.50.1q, 64.60.Cn
re
s
p-
pa
o
in
ibl
b
tr

pe
th
e
e
it
e
i

ism
e
ew
re
on
aj
,

ze

o
pa
e
e
o
be
is
a
he
le

el

ing

c-
ean

the
d-
o
s,
ded

-

er-
I. INTRODUCTION

It is the activity of specific structural genes, which a
controlled by associated regulatory genes, that generate
vital phenomena of proliferation, differentiation, develo
ment, and persistence of spatial and functional ordered
terns in the life span of each organism. Thus one of the m
challenging problems in modern biology is the understand
of the complex set of biochemical interactions respons
for differences in the rate of synthesis of various proteins
differentiated cells in eukaryotes, the so-called gene con
mechanism@1#.

This mechanism regulates the repertoire of different ty
of mRNA molecules, the abundance of each mRNA, and
number of times each mRNA is used before it is destroy
Consequently, it determines the kind and the amount of
zymes and structural proteins, the products of gene activ
contained in each cell. In this lies the essence of cell diff
entiation: it is the protein content of one cell that makes
different from another one. The gene control mechan
regulates the concentration or abundance of proteins ov
range from one to two orders of magnitude and very f
genes are subjected to absolute ‘‘on-off’’ regulation. The
fore, although cell specific proteins can be possible am
those that determine the cell specific character, the m
differences among cell types are in the regulatory genes
proposed by Wilson@2# and King and Wilson@3#, who found
few discrepancies in the structural proteins of chimpan
and human species.

At the transcriptional level, the most frequent process
gene control, the changes in the rate of synthesis of a
ticular protein are regulated, primarily, by increasing or d
creasing the synthesis of a primary RNA transcript in the c
nucleus. A simplified model for the transcriptional contr
@4# shown in Fig. 1 can essentially model genes transcri
by RNA polymerase I, II, and III. At any instant each gene
either active or inactive for transcription, with or without
transcription complex bound to it, respectively. Finally, t
target of these regulatory molecules can be either a sing
a set, of perhaps ten or more, genes.

One of the first models for genetic regulation and c
differentiation has been proposed by Kauffman@6#. It con-
551063-651X/97/55~3!/3262~9!/$10.00
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sists ofN binary genes, all of them connected toK other
fixed genes or inputs randomly chosen among the remain
ones. The statesi of each genei , i51,2, . . . ,N, is updated
by a transition functionf i that represents the gene intera
tions via the proteins, chosen at random among all Bool
functions withK variables.

FIG. 1. Simplified model of gene induction. The steps are
following: ~a! the inactive transactive factor 1 is activated by bin
ing an inducer molecule;~b! the active transactive factor 1 binds t
a regulatory sequenceRS1; ~c! a second transactive factor 2 bind
perhaps facilitated by protein-protein interactions with the boun
transactive factor 1, to the regulatory sequenceRS2; ~d! RNA poly-
merase recognize this transcription complex~transactive factors
bounded to enhancer-promoter regions!; ~e! RNA synthesis ini-
tiates; ~f! while the transcription complex remains, RNA poly
merase repeatedly recognizes it; and~d! RNA synthesis continues
~e!; ~g! the dissociation of transcription complex from the enhanc
promoter sequences initializes the whole process. From Ref.@5#.
3262 © 1997 The American Physical Society
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55 3263CELLULAR AUTOMATA MODEL FOR GENE NETWORKS
The dynamical properties of these random Boolean n
works have been studied by several authors@7–12# and, in
brief, the main results follow: for networks with connectivi
K.2 the attractors are chaotic with low stability to minim
perturbations, cycle lengths increase exponentially withN
~undesirable aspects in biological modeling!, and the average
number of alternative cycles is proportional toN. In contrast,
nets withK52 show striking spontaneous order. The e
pected length of state cycles is onlyN1/2, the number of
alternative attractors is alsoN1/2, and each cycle is stable t
almost all minimal perturbations. All of these results are d
cussed in Ref.@13#.

Recently, Bastolla and Parisi have investigated anal
cally @14# and by computer simulations@15# the distribution
of cycle lengths, average number of attractors, and distr
tion of attraction basins for the Kauffman model. They fou
that all systems on the critical line exhibit the sam
behavior—cycle lengths and number of attractors increas
N1/2 in an annealed approximation—as theK52 original
Kauffman proposal.

In this paper we study, by numerical simulations a
mean-field analytic calculations, the dynamical properties
a cellular automata~CA! model which incorporates bot
long-range interactions~as in the original Kauffman model!
and short-range gene interactions~next and next-nearest cou
plings, as in the lattice version of Kauffman’s model!. In
Sec. II the CA model is described. In Sec. III we present
simulation results, concerning average periods, numbe
different attractors, and stability against mutations. A me
field study of this last property is also done. In Sec. IV w
discuss our results in terms of the biological data curren
available. Finally, we conclude in Sec. IV.

II. CELLULAR AUTOMATA MODEL

The activity of gene induction is not a single event occ
ring within the cell. On the contrary, multiple gene intera
tions are frequently observed, i.e., induction or repression
certain gene sets. The final effect or cellular response is
tained from all these interactions, initially triggered by a sp
cific extracellular stimulus. This process reminds us of latt
models in which any ‘‘site’’ is capable of influence upo
other ‘‘contact sites,’’ ‘‘positively’’ or ‘‘negatively.’’

In the CA model presented in this paper the genome
represented by a set ofN binary genessi , i51,2, . . . ,N.
Whensi51 the gene is active for transcription and the sp
cific enzymes or structural proteins it codifies are produc
On the other hand, whensi50 the gene is inactive and th
products it codifies are not synthesized. The network stat
a given time t is specified by the activity patter
s1(t),s2(t), . . . ,sN(t). Each genei is regulated byK21
other genes and by itself, through a function of the previo
state of its regulatory elements. In analogy with neural n
work models@16# the gene activity state at the next time st
is given by

s i~ t11!5sgnS Jiis i~ t !1 (
l51

K21

Ji j l ~ i !s j l ~ i !
~ t !D , ~1!

whereJi j l ( i ) is the coupling constant representing the regu
t-
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tory action of thej l( i ) ( l51,2, . . . ,K21) input on genei
and Jii is the autogenic regulation. sgn(x)50 if x<0 and
sgn(x)51 if x.0. All the gene states are simultaneous
updated. In order to accomplish this, a given gene evalu
the present stimulus from all its regulatory genes, includ
itself. If the overall stimulus it receives at timet is positive,
the gene activates, or stays active if it was already act
otherwise it turns inactive or stays inactive.

The coupling constantsJi j model the extremely complex
and partially unknown set of biochemical interactions brie
discussed in the Introduction. Our choice of theJi j ’s takes
into account the following biological features.~i! The prod-
ucts of a determined gene can activate, inhibit, or not aff
the transcription of another gene. In our model all the a
vatory interactions will assume the same value1J and the
inhibitory ones2J. When the genej does not influence the
expression of a different genei , the coupling constant is
Ji j50, corresponding to a diluted bond.~ii ! The gene inter-
actions are asymmetric, i.e.,Ji jÞJji . The case in which a
given genei activates another genej that, in turn, inhibitsi ,
is biologically frequent.~iii ! Autogenic or self-regulation
gene control is frequent in living organisms. In the pres
CA model the self-control is provided by theJii coupling
constants.

Since the molecular biologists have elucidated only p
tially the real connectivity matrix among genes, we ha
chosen a random distribution of nonsymmetricalJi j ~valid
also for the self-interactionsJii ! described by

P~Ji j !5
~12p1!

2
@d~Ji j2J!1d~Ji j1J!#1p1d~Ji j !,

~2!

whered(x) is Dirac’s delta function andJ51. Therefore, for
a particular gene network, each bondJi j is activatory~11! or
inhibitory ~21!, with probability ~12p1!/2, or diluted~J50!
with probabilityp1. As noticed by Weisbuch@17#, a random
interaction matrix is a positive choice once one is looking
generic properties independent in any critical manner o
particular interaction structure, which probably varies fro
one organism to the other.

Also, since almost all known regulated genes in proka
otes and eukaryotes are directly controlled by up to six or
gene products, our CA model involvesK59 regulatory in-
puts per gene, including itself. Of themK21 inputs are ei-
ther chosen at random among all the other remaining ge
with probability p2, or are its neighbor genes with probab
ity 12p2. Thus thep251 limit corresponds to an infinite
range model with connectivityK59 ~including the self-
interaction Jii !, whereas thep250 limit corresponds to a
square lattice in which each site has a Moore neighborh
defined by its eight nearest and next-nearest neighbors.
any otherp2 values the simultaneous presence of short- a
long-range couplings reflects the biological fact that a giv
gene can be regulated by either its nearest neighbors or
tant DNA sequences, whose proteins, produced in the c
plasm, diffuse towards the cell nucleus. Therefore, as Ke
Thomas, and Pohley@18# observed, spatial distances are fr
quently an irrelevant feature for functional biological ne
works. Once theK inputs of each gene and the correspon
ing interactionsJi j are chosen at the beginning, the C
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FIG. 2. Distribution of periods for~a! p25p150 ~local, nondiluted!; ~b! p150.80,p250 ~diluted, local!; ~c! p150, p250.70~nondiluted,
nonlocal!; and ~d! p150.20,p250.75 ~diluted, nonlocal! gene networks. The data correspond to simulations for 10 000 different nets
N5400 genes, each one tested with three random initial states.
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structure is fixed forever. The quenched CA defined by
~1!, where there is a zero threshold, corresponds to a m
mally disordered system.

III. RESULTS

In the present CA model there are, except in thep251
limit, geometrically correlated~nearest-neighbor! couplings
which have made an analytical solution@16# unfeasible.
Therefore the dynamical properties of the CA were stud
mainly through computer simulations. In all the simulation
any initial states of the genes were equally probable and
largest genome size used wasN5625 genes. In Sec. III D we
compared the simulation results with analytic calculations
a simplified mean-field model.
.
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A. Periods and number of attractors

Since the phase space of a finite CA contains onlyN

different configurations, its deterministic dynamics fina
will drive the system towards an attractor, either a limit cyc
or a fixed point.

Figure 2~a! shows the period distribution for the cycles
thep250 limit, corresponding to a CA with only local~near-
est and next-nearest neighbor! interactions. The presence o
dilution, Fig. 2~b!, affected the former period distribution b
decreasing the frequencies of long period cycles. Also,
average period of a nondiluted net can be reduced, Fig. 2~c!,
if the probabilityp2 of long-range interactions is increase
Therefore the combined effects of dilution and long-ran
couplings, shown in Fig. 2~d!, could be important to design
gene nets with limit cycles of low average period.
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55 3265CELLULAR AUTOMATA MODEL FOR GENE NETWORKS
Figure 3~a! shows the average period of the attractors fo
the diluted, short-range CA model. It was found numerical
that the average period increases exponentially with t
numberN of genes forp1,0.40 and as a power law for
0.40<p1<1. The critical value ofp1'0.40 corresponds to an
effective average connectivityKeff'5.4, greater than the
critical valueK54 for the local model considered by Kurten
@16#. The introduction of long-range couplings decreases t
average periods as shown in Fig. 3~b!. In the local~p250!
case the exponents range from 1.68, forp150.40, to 0.39, for

FIG. 3. ~a! Average period of attractors as a function ofN for
local ~p250! gene networks. A transition between an exponenti
and a power law scaling of the periods withN occurs near
p1c50.40. The solid ~dashed! lines correspond to exponential
~power! fittings. ~b! The effect of long-range couplings, shown in a
log-log plot, for p150.70 and variousp2 values. The data corre-
spond to 10 000 different nets, each one tested with five rand
initial states.
r

e

e

p150.90. However, the analysis of the average period a
function of the numberN of genes is very difficult, espe-
cially in the critical region and in the low-diluted regime
where the periods are very long.

Another important quantity is the number of distinc
cycles, which provides information about the structure of t
attractors in the CA phase space. The numerical simulatio
carried out have revealed that this number increases a
power law of the number of genes in both regimes. A typic
log-log plot of the number of cycles versusN is shown in
Fig. 4. The exponents vary from 1.80, forp250.20, to 1.47,
for p250.80, and fixedp150.20.

B. Stability of the attractors

Even in the regime where the period of cycles grows e
ponentially asN increases, it does not mean that the flow o
these attractors is divergent or exhibits extreme sensitivity
initial conditions.

In order to investigate the stability of the attractors th
damage spread throughout the CA have been studied. To
this, first the automaton was simulated during a given tra
sient. Then a replica of the system was made where an ‘‘i
tial damage’’ was created by flipping randomly a fractionp
either of the genes or of the regulatory connections. As tim
evolves, the initial damage spreads through a damaged
gion where the genes in the two systems have different v
ues. This damage is measured by a normalized Hamm
distanceC defined by

C~ t !5
1

N (
i51

N

us i8~ t !2s i~ t !u, ~3!

i.e., the fraction of genes (s i8) in the replica system that
differ from their counterparts~si! in the original system.

l

m

FIG. 4. A typical log-log plot of the number of different attrac
tors as a function of the genome sizeN for diluted ~p150.20! and
nonlocal ~p2Þ0! gene networks. The exponents range from 1.8
for p250.20, to 1.47 forp250.80. The data correspond to 4.00
different nets, each one tested with ten random initial states.
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The CA is in its ordered phase if, for largeN and suffi-
ciently long timet, an arbitrarily small initial Hamming dis-
tanceC~0! vanishes or does not grow. On the contrary,
CA is in its chaotic phase ifC approaches a finite non-nu
value forC~0!→0. Consequently, small perturbations intr
duced in the CA initial state or connectivity structure gro
into differences of a large size. Therefore in the chao
phase the attractors become unstable and unable to r
homeostatically, after small perturbations, to its previo
limit cycle. This means, in summary, that the CA dynamic
evolution exhibits extreme sensitivity to initial conditions.

Typical behaviors of the Hamming distance are shown
Fig. 5, for the diluted~p1Þ0! and local~p250! case. The
complete dynamical phase diagram in parameter sp
(p1 ,p2) is shown in Fig. 6. To get the limitC~0!→0 prop-
erly, in the numerical simulations the following trick@19#
has been used: consider three initial statess1, s2, ands3
with C12~0!5C23~0!51

2C13~0!5s!1, where s is a fixed
number. HereC12 denotes the Hamming distance betwe
the configurationss1 ands2, and so on. Then

C~ t !5C12~ t !1C23~ t !2C13~ t ! ~4!

is a reliable extrapolation toC~0!→0. The phase diagram
shown in Fig. 6, presents a frozen and a chaotic phase
which a small initial damage vanishes or attains a fin
value, respectively. In addition, there is a third phase loc
ized in a narrow band between the chaotic and frozen
gions, for which the final damage remains at the same siz
the initial damage.In this marginal phase the attractors ar
stable since a small initial damage neither vanishes n
grows.The existence of this marginal phase, which, as w
be seen in a next subsection, is due to the simultaneous
ence of local and long-range interactions in the genomic
works, is the central result obtained by our simulations.
contrast, Derrida and Pomeau@8# using an annealed approx
mation have shown that, for an infinite system, the Hamm
distance in the Kauffman model attains a finite nonzero va
in the chaotic phase and zero elsewhere. Moreover, the
nealed approach for the Hamming distance evolution is
act, in the limit of large systems, until times of the order
ln N @8,20#.

C. Percolation of frozen components and dynamical order

As is shown in Fig. 7, the CA dynamics crystallizes
subset of genes in fixed active or inactive states, which c
stitute a frozen component. The structure of this frozen c
is determined by the control parameters (p1 ,p2). In the fro-
zen phase a frozen core percolates through the gene ne
isolates usually several subsets of genes oscillating in c
plex patterns. Since each oscillating subset has its own
riod, the global period cycle is the product of all such sub
periods. The marginal phase corresponds to the boun
region where a frozen core begins to percolate and the su
of oscillating genes is just splitting in separated islands. T
region marks the phase transition between order and ch
In contrast, in the chaotic phase a frozen core does not
colate and the great majority of genes oscillate in comp
cycles. Only small islands of frozen genes form and theref
a damage introduced in one site can propagate via
coupled elements to a finite fraction of genes in the netwo
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In this phase the genome exhibits sensitivity to initial cond
tions. So, as has been noticed by Kauffman@13# and Weis-
buch and Stauffer@12#, the appearance of a percolating fro
zen core seems to be a sufficient condition for an orde
behavior in our CA model.

Figure 8 shows the typical behavior of the fraction o
oscillating genes as a function of the genome sizeN. In the
frozen phase this fraction decreases withN and appears to
attain an asymptotic value in which only a few percent
genes oscillate. In contrast, the average fraction of oscillat
genes increases withN in the chaotic phase, but again it i
very difficult to analyze this regime since the periods a

FIG. 5. Long time Hamming distanceC as a function of the
initial damageC~0! for diluted ~p1Þ0! and local~p250! CA. In ~a!
the initial damage was introduced in the gene activities and in~b!
only the gene interactions were damaged. The data correspon
2.000 different nets withN5625 genes, each one tested with fiv
random initial states.
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55 3267CELLULAR AUTOMATA MODEL FOR GENE NETWORKS
very long. On the other hand, the fraction of oscillatin
genes is quasi-independent ofN in the marginal phase and
fluctuates around 20%, therefore predicting a core of fro
genes comprising, on average, 80% of them. Again this
central result since Flyvbjerg@21# has shown that the frozen
core in the infinite Kauffman model exhibits only two re
gimes. In the chaotic phase the fraction of frozen genes te
to a value less than 1, while in the frozen phase and on
critical line this fraction tends to 1. Therefore the order
phase in the Kauffman model seems to be excessively r
as compared with the marginal regime presently found.

Also, our simulations reveal that, with fixedp2 ~the prob-
ability of long-range couplings!, the fraction of oscillating
genes decreases with the increase of the dilution probab
p1, since the overall stimulus received by a gene typica
decreases@see Eq.~1!#. Therefore the number of genes fro
zen in the inactive state grows. On the other hand, fixingp1,
the fraction of oscillating genes slightly decreases with
increase ofp2 in the nonchaotic phases. To understand t
result we consider a given element at the border of an os
lating island. Ifp2 increases, so does the chance of this e
ment to receive an input from a distant gene, most proba
from a frozen one since in these phases the majority of
gene activities are fixed. Consequently the chance of
gene to enter into a cycle decreases, and the size of non
zen islands and the fraction of oscillating genes also
crease.

D. A mean-field calculation

In this section analytical results of a mean-field versi
for the dynamics of the model introduced in Sec. II are p

FIG. 6. Phase diagram in the unit square (p1 ,p2) considering
the CA sensitivity to initial conditions. The system presents th
phases: frozen, marginal, and chaotic, depending on whether
t→` Hamming distanceC vanishes, remains of the same size,
approaches an independent finite value for almost allC~0!→0, re-
spectively. The data correspond to 1.000 different nets withN5400
genes. Each net was tested with one random initial state.
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sented. The main simplification refers to the connectiv
structure of the CA. Here it is assumed that each gene
sents connections withK other genes chosen at random fro
the totalN, itself included. Then ifK remains finite asN
grows to infinity ~as is the case we are interested in!, it can
be proved@22# that the dynamics of individual genes are n
correlated and can be solved analytically. The calculati
will be restricted to this case. The complete model, w
long- as well as short-range interactions, in which the spa
structure of the neighborhood of the genes begins to be
portant, is very difficult to study analytically because corr
lations develop rapidly as time passes and the expression
the dynamical evolution become intractable.

Concretely, we calculated the time evolution of the Ha
ming distance, Eq.~3!, between two replicas of the CA, with
an initial fraction of damaged genes in one of them. We w
able to introduce the effects of random noise, or ‘‘tempe
ture’’ in the dynamics that is defined by

P~s i !5
1

11exp~22s ihi /T!
, ~5!

with T being the temperature of the system or level of no
in the network dynamics andhi5( j51

K Ji js j1h represents
the effect on genei from itsK neighbors,h being an external
input. Note that in the limitT→0 the dynamics Eq.~5! re-

e
he
r FIG. 7. Typical subsets of oscillating~d! and frozen~s! com-
ponents in networks withN5121 genes in the~a! chaotic
~p150.25!, ~b! marginal ~p150.50!, and ~c! frozen ~p150.75!
phases, with fixedp250.75. In the frozen regime the oscillatin
genes form small isolated islands, contrary to the chaotic phas
which the majority of genes oscillate in complex cycles. The m
ginal regime corresponds to the boundary region where a fro
core begins to percolate.
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duces to Eq.~1! with a nonzero thresholdh. Following the
lines of Ref.@23# the following map for the time evolution of
C(t) was obtained:

C~ t11!5
1

2K (
p50

K

(
n50

K2p

(
m50

p

@C~ t !#p@12C~ t !#K2pSKp D
3SK2p

n D S pmD H 1

11e22~Xn1uYmu1h!/T

2
1

11e22~Xn2uYmu1h!/T J , ~6!

with Xn5[2n2(K2p)]J andYm5(2m2p)J.
Before analyzing the solutions of this equation we no

that there are four free parameters: the connectivityK, the
noise levelT, the external inputh, and the mean strength of
the interactionsJ. The effect ofK andT will be analyzed
fixing J51 andh50 throughout. The long time behavior of
C(t) was studied for connectivitiesK ranging from 1 to 9 as
a function of the temperatureT. The main result is shown in
Fig. 9~a!: for eachK>3 there is a phase transition at a finite
T from a chaotic phase whereC~`!.0 to an ordered or
frozen phase withC~`!50. An important point to stress is
that the asymptotic values ofC(t) are independent of the
initial damageC~0!. This is in contrast with the results
found in the simulations and suggests that spatial structu
and short-range interactions may be relevant for the prese
of the marginal phase in which the Hamming distance sta
small for small initial damage or ‘‘mutations.’’ In Fig. 9~b! it
can be seen, for a typical case withK55, how the final

FIG. 8. Fraction of oscillating genes as a function of genom
sizeN and fixedp250.50. In the frozen~p150.80! phase only a
few percent of the genes oscillate, while, in contrast, the fraction
oscillating genes increases in the chaotic~p150.20! phase. In the
marginal~p150.55! regime this fraction fluctuates around 20% o
the genes and predicts a core of frozen genes comprising, on a
age, 80% of them.
e

re
ce
s

damage behaves with increasingT. It presents a continuou
transition toC50 at a critical temperatureTc which in-
creases with increasingK.

IV. DISCUSSION

In the context of cell differentiation Kauffman interpre
the cell types as stable cyclic patterns of gene expres
emerging from the interactions among genes and their p
ucts. Consequently, the total number of cyclic attractors r
resents the highly limited number of differentiated cell typ
in a living organism. Also, the periods of these attractors
related to the various differentiated cell cycles@24,25#. Bear-
ing in mind this biological interpretation, our numeric

e

f

er-

FIG. 9. ~a! Mean-field phase diagram in which only the chao
~C.0! and frozen~C50! phases appear, independently of the in
tial damage. The parametersJ51 andh50 are fixed.~b! Typical
behavior of the order parameterC as a function of the externa
noiseT for a fixed connectivityK55, characterizing a continuou
phase transition. Again,J51 andh50 are fixed.
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55 3269CELLULAR AUTOMATA MODEL FOR GENE NETWORKS
simulations are consistent with the observed data, since
following items are true.

~i! Always in the period distribution, shown in Fig. 2, th
majority of cycles has short periods and a few examples h
very long ones, as is the case for the biological obser
mean cycle time for each level of genomic size~or complex-
ity! @25#.

~ii ! Even in the local case the exponents controlling
power law increase of the average periods, ranging from 1
to 0.39, are consistent with the biological evidence that
average mitotic period increases either as the square ro
the DNA content per cell or linearly with~perhaps slightly
faster than! the number of transcribed genes across m
phyla @25#. Also, these periods increase exponentially o
above an effective connectivity ofKeff'5.4, close to the av-
erage number of regulatory sites per gene in a multicellu
organism suggested as being, at least, five@26#.

~iii ! The observed number of cell types does not incre
as the square or as an exponential function of the gene n
ber in organisms across many phyla@25#. Again, in both CA
regimes~ordered and chaotic!, the number of different attrac
tors increases as a power law of the genomic size, with
ponents in the biologically expected range.

~iv! Finally, our CA exhibits a marginal regime in whic
the gene expression patterns are stable against almost al
turbations and, in addition, limited mutations are permitt
Therefore in this regime the Darwinian adaptive evoluti
that occurs by gradual accumulation of useful minor mu
tions is possible. Also, in the marginal phase the fraction
oscillating genes fluctuates around 20%, which means
on average 80% of the genes comprise a frozen core.
result is consistent with biological data, since it is observ
that 70% or more of the genes are transcribed into heter
neous nuclear RNA among all cell types of an organism

In summary, our very simple model can exhibit some
the properties observed in living organisms. Moreover, it
inforces the hypothesis, raised by Langton@27# in the context
of complex systems, dynamics, and computation, that
occurs in a marginal region at the edge of chaos, in which
cell types are stable and endowed with the necessary
ibility to allow mutations and, consequently, diversity a
natural evolution, basic features of life.

V. CONCLUSION

In the present paper we have investigated numerical
simple CA model for gene control, which consists of bina
genes interacting through asymmetric short- and long-ra
activatory, inhibitory, or diluted coupling constants chos
he
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from a specified probability distribution. This model with
zero threshold corresponds to a maximally disordered
version. We found that the CA parameter space is partitio
by attractors~limit cycles! which are either sensitive or not t
the initial conditions. In the chaotic regime the average
riod of the attractors increases exponentially with the
nome size, while in the ordered phase we observed a po
law increase of their average period. The stability analysis
these attractors demonstrated that within the ordered p
the cycles are stable against damage spreading. Indeed
ordered regime is divided into two regions: a frozen one,
which the final Hamming distance is always zero; and a m
ginal one, in which the final Hamming distance is of th
same order of the initial one. The marginal region, localiz
between order and chaos, has stable attractors or cell t
endowed with the necessary flexibility to allow mutatio
and therefore natural evolution, a basic feature of life. T
existence of this marginal phase is the central result obta
by our simulations. In contrast, in the chaotic regime eve
small initial damage spreads to a finite fraction of gen
Also, the marginal regime is a result of the simultaneo
presence of local and long-range interactions in the geno
networks. This conclusion is supported by the absence of
marginal regime in a simplified model with only long-rang
interactions. The presence of noise in the simplified mo
did not destroy the basic phase transition between the cha
and the frozen phases in the CA dynamics but affects
value of the critical connectivity for which a chaotic pha
develops for each noise level.

Finally, the observed power laws in the ordered regi
for both the average period cycles and number of disti
attractors are in the range suggested by the biological
concerning the cell cycle length and number of differentia
cells in an organism. However, more extensive simulatio
involving genome sizes of 103 or 104 genes and with nonzero
thresholds are necessary in order to investigate if the m
ginal regime, mainly, persists even in the infinite size lim
since in Ref.@15# it is suggested that the number of cycl
and their lengths increase very fast with random Boolean
size, which seriously prejudices the biological interpretati
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